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Adaptive General Scale Interpolation Based
on Weighted Autoregressive Models

Mading Li, Jiaying Liu, Member, IEEE, Jie Ren, and Zongming Guo, Member, IEEE

Abstract— The autoregressive (AR) model has been widely
used in signal processing for its effective estimation, especially in
image processing. Many dedicated 2× interpolation algorithms
adopt the AR model to describe the strong correlation between
low-resolution (LR) pixels and high-resolution (HR) pixels. How-
ever, these AR model-based methods closely depend on the fixed
relative position between LR pixels and HR pixels that are nonex-
istent in the general scale interpolation. In this paper, we present
an adaptive general scale interpolation algorithm that is capable
of arbitrary scaling factors considering the nonstationarity of
natural images. Different from other dedicated 2× interpolation
methods, the proposed AR terms are modeled by pixels with
their adjacent unknown HR neighbors. To compensate for the
information loss caused by mismatches of AR models, we consider
a weighting scheme suitable for general scale situations based
on the pixel similarity to increase accuracy of the estimation.
Comprehensive experiments demonstrate the effectiveness of the
proposed method on general scaling factors. The maximum gain
of peak signal-to-noise ratio is 2.07 dB compared with segment
adaptive gradient angle in 1.5× enlargements. To evaluate the
performance in resolution adaptive video coding, we have also
tested our method on Joint Scalable Video Model codec and
obtained better subjective quality and rate-distortion perfor-
mance.

Index Terms— Autoregressive (AR) model, general scale,
interpolation, pixel similarity.

I. INTRODUCTION

W ITH rapid developments in modern technology, image
and video processing is playing an increasingly impor-

tant role. In the field of consumer electronics, the variety
of media-playing devices makes it necessary for the single
image/video source to be transformed into different resolu-
tions. H.264/Scalable Video Coding (SVC) [2], the expansion
of the current video coding standard H.264/Advanced Video
Coding (AVC), provides support for spatial scalability. How-
ever, it only supports certain scaling ratios and is unable to
meet the requirements of the practical resolution adaptivity.
In the latest High Efficiency Video Coding (HEVC) standard,
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the spatial and temporal scalability of HEVC still calls for
proposals [3]. Thus, an adaptive general scale interpolation is
urgently needed to deal with the challenge of the arbitrary
resolution display.

Image interpolation is a process that generates high-
resolution (HR) images utilizing the information from low-
resolution (LR) images. The key task of image interpolation
is to estimate the HR pixels interpolated into the LR image.
Conventional polynomial-based interpolation algorithms, such
as bilinear and bicubic [4], apply a convolution on every inter-
polated pixel. Pixels are estimated by a polynomial comprised
of adjacent pixel values, which are usually weighted by their
distance from the interpolated pixel. As a result, the com-
plexity of polynomial-based interpolation methods is rather
low and these interpolation methods are easy to implement.
However, these methods apply the same convolution kernel on
every interpolated pixel. Thus, they do not distinguish pixels
in the smooth region from those in the high-frequency region.
Furthermore, these methods are based on the assumption
that local areas in images are continuous. Natural images
have lots of discontinuous features. Therefore, polynomial-
based interpolation methods produce noticeable reconstruction
artifacts and blur the image, especially across edges.

Since the edge structure is one of the most salient features
in natural images for the human visual system, many edge-
directed interpolation methods are published to produce better
reconstructed images with sharp edges. An effective way is
to detect the orientation of the edge and interpolate along
the direction [5], [6]. For example, Wang and Ward [5]
proposed an orientation-adaptive interpolation method. They
detected the local orientation of an interpolated pixel by
bilinearly interpolating the gradient of its four nearest LR
neighbors estimated by an improved Sobel operator. Then,
they determined a parallelogram that enclosed the interpolated
pixel and used pixels on its vertices to interpolate the pixel’s
value. Giachetti and Asuni [6] presented an iterative curve
based interpolation (ICBI). The two-step algorithm first filled
missing pixels with the average of two neighbors in the
direction of the lowest second-order derivative and assigned an
energy component at the new pixel location. In the second step,
an iterative greedy procedure minimized the global energy by
modifying the interpolated pixel values. In these methods,
the interpolation is rather simple once the orientation of
the edge is obtained. Hence, the key step is the detection
of edge orientation. The more accurate the edge orientation
detection is, the better interpolation quality the method can
produce. Nevertheless, the detection of edge orientation is
easily affected by noises. Thus, it is not a trivial work to make
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a precise detection of edges and the accuracy of the detection
is unstable and unguaranteed.

To avoid the difficulty of detecting the edge orientation,
edge orientations are fused with weights to improve the accu-
racy of edge detection [7]–[9]. Li and Nguyen [7] predefined
16 discrete directions in a 7 × 7 neighborhood structure and
each direction contributes to the estimated edge direction.
The weight of each direction is calculated by pixel intensity
variation (large weight along edges and small weight across
edges), imposing a geometric regularity constraint on the
interpolated image through the Markov random field model.
Zhang and Wu [8] interpolated missing HR pixels by fusing
estimations along two orthogonal directions using linear min-
imum mean square-error estimation. Similarly, Zhou et al. [9]
proposed a directional cubic convolution (DCC) interpolation.
They applied bicubic interpolation along estimated strong edge
directions, while fusing two orthogonal directional bicubic
interpolation results on weak edges. However, the number of
the fusing edges was finite in these methods that reduced the
adaptivity of these methods.

In contrast with direct orientation detection, [10] and [11]
used autoregressive (AR) models and corresponding para-
meters to characterize the edge direction information. The
new edge-directed interpolation (NEDI) was proposed in [10].
The parameters of the diagonal-direction AR model in the
LR image were computed by a least-squares method. Based
on the geometric duality between the LR covariance and the
HR covariance, they estimated HR pixels by their neighboring
LR pixels using the corresponding AR model parameters in the
LR image. Zhang and Wu [11] further proposed a soft-decision
adaptive interpolation (SAI) based on NEDI. They added a
cross-direction AR model and more correlation constraints
between LR pixels and HR pixels and produced state-of-the-
art results.

However, these AR-based algorithms are based on the
assumption that images are piecewise stationary. To account
for the fact that the natural image is not always stable in
local windows, [12] proposed an implicit piecewise AR (IPAR)
model-based image interpolation algorithm based on similarity
modulated block estimation. In IPAR, a similarity probability
model between HR blocks was proposed to manage the
nonstationarity of image signals. Similarly, Hung and Siu [13]
proposed an improved edge-directed interpolation algorithm
by modeling the weights of residuals for parameter estimation
using the bilateral filter. Moreover, to solve the mismatch of
geometric duality between HR and LR geometric structures
in 2× enlargement, Hung and Siu [14] further proposed a
robust soft-decision interpolation using the weighted least-
squares estimation. Nevertheless, weighting schemes provided
by these methods are still limited in the 2× enlargement.

As for practical applications such as image compression
and video coding, interpolation is a widely used fundamental
technology. In H.264/SVC, a bilinear interpolation filter is
adopted as the up-sampling operation for residual. However,
bilinear interpolation often produces lots of artifacts, such as
aliasing and blurring. These artifacts not only affect the visual
quality of video sequences but also reduce the compression
efficiency.

With the rapid growth of the mobile devices, resolu-
tion of video sequences and images differs greatly between
devices. Thus, general scale enlargement methods are urgently
required. Nevertheless, interpolation methods aforementioned
are lack of general scale capability. These state-of-the-art
interpolations [6], [8]–[16] have rather impressive perfor-
mances, while they can only deal with enlargements whose
magnification is 2i , (i = 1, 2, . . .).

Some learning-based methods can accommodate arbitrary
scaling factors. Super-resolution methods based on sparse
coding [17]–[19] are the representative research results of
these methods. These methods sought the sparse representation
of small patches in the input LR image and tried to generate
the HR output by the coefficients of the representation. They
trained two dictionaries for LR and HR image patches and the
learned dictionary pair is a compact representation adapted
to the natural images of interest. The image enlargement
performance of this kind of methods is relatively good, yet the
learning step is really time consuming. To apply for different
scaling factors, these methods need to learn dictionaries for
each factor. Thus, these methods are not suitable for general
scaling.

The iterative back-projection (IBP) [20] is another
classic method capable of general scaling. The IBP process
reconstructed the HR image from the LR image (or a set of
LR images) by minimizing the reconstruction error iteratively.
However, the big solution space of IBP made it difficult to
obtain the optimal solution. To improve the performance of
the IBP process, the regularized IBP methods by nonlocal
means based filters [21] and bilateral filters [22] have been
proposed. Nevertheless, the textures of the reconstructed
images are still unsatisfactory.

Bicubic interpolation supports arbitrary scaling factor, but
it also produces noticeable fuzzy areas and ringing arti-
facts. In current H.264/SVC reference software Joint Scalable
Video Model (JSVM), the scaling factor must have a value
of 1.5 or 2 based on the Scalable Baseline profile [2].
Wu et al. [23] proposed an adaptive resolution up-conversion
method based on H.264/SVC. Similar to SAI, the method used
two directional AR models constructed of pixel neighbors.
However, the instability of the natural image in local areas
was not considered that could lead to an inaccurate estimation
of AR models. Meanwhile, the general scale capability of
Wu’s work is also restricted by H.264/SVC and only supports
certain scaling ratios. Tang et al. [24], [25] proposed two
kinds of general scale interpolation methods based on the
AR model. One of them used the geodesic distance weighting
to simultaneously measure both the spatial distance and color
difference [24], the other combined the AR model with convo-
lution kernel constraint to obtain good results [25]. However,
the computational cost of geodesic distance is rather high
in [24] and the convolution kernel should be the same with
the down-sampled one in [25]. Lately, Zwart and Frakes [1]
proposed a segment adaptive gradient angle (SAGA) inter-
polation based on approximations of image isophotes. Their
method had rather impressive performance for 2× enlargement
but the interpolation on arbitrary scaling factors was not
satisfactory.
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Fig. 1. Flowchart of the proposed method.

To solve issues mentioned above, we propose a novel
general scale image interpolation algorithm robust to down-
sampling methods. The proposed method can accommodate
arbitrary scaling factors, while considering the instability of
natural images in local areas. As shown in Fig. 1, the interpo-
lation algorithm can be optimized by adjusting the composition
of AR models and introducing a data fidelity constraint. The
new AR models are constructed by the pixel’s unknown HR
neighbors. Inspired by weighted least-squares interpolations
[12]–[14], we propose a weighting scheme suitable for general
scale situations to determine the similarity between pixels in a
local window, which can be used to adjust the formulation of
the AR models. Finally, since the HR pixels and parameters
of two AR models are both unknown, the structured total
least-squares solution (STLS) [26] can be utilized to linearize
the objective function and solve the problem by an iterative
process. The main contribution of our work is to produce a
general scale interpolation framework that suitable for all kinds
of down-sampling methods and initial values. Comprehensive
experiments show that our method produces the best image
quality both from the subjective perspective and objective
criterion. Comparing with state-of-the-art interpolation algo-
rithms, the proposed method preserves better image details,
especially along edge structures. The maximum gain of peak
signal-to-noise ratio (PSNR) is 2.07 dB compared with SAGA
in 1.5× enlargements. In addition, the performance of the
proposed method in 2× enlargement is comparable with state-
of-the-art dedicated 2× interpolation algorithms. When tested
on JSVM codec, the largest gain of our method over JSVM
is 1 dB.

The rest of this paper is organized as follows. Section II
gives a brief introduction of the two AR models and discusses
the superiority of the proposed method compared with prior
works. Section III generalizes the interpolation algorithm to
general scaling factor, and then describes the proposed image
interpolation algorithm based on the weight distribution in the
local window. Experimental results and analysis of the pro-
posed method are presented in Section IV. Finally, Section V
concludes this paper.

II. AR MODEL

A. Prior Works

The AR model is often used in statistics and signal
processing. In image interpolation, an AR model is considered

as a representation of the local image structure. It can obtain
an estimation of pixels based on the given information that
means that every unknown interpolated pixel in an image can
be estimated by its known adjacent neighbors with certain
weights. The AR model is defined as

X (m, n) =
∑

(i, j )∈�

X (m + i, n + j) · ϕ(i, j) + σ (1)

where σ is the estimation error, � and ϕ are the adja-
cent neighbors and their weights (parameters of the AR
model) to pixel X (m, n), respectively. The AR model and
its parameters attempt to characterize the local structure of
the local window W . Based on the assumption that images
maintain stability in the local window W , the parameters of all
AR models in W are considered the same. Thus, the
parameters can be computed by solving the linear least-squares
problem

min
ϕ

‖X − Xn · ϕ‖2
2 (2)

where X is an M × 1 vector consisting of all M pix-
els in W . Xn is an M × l matrix where the i th row
of Xn consists of l adjacent neighbors of the i th pixel
in X. Specifically, in 2× enlargement, Xn is completely
constructed by LR pixels. In this case, the AR parameters
ϕ should be an l × 1 vector representing all the weights of
the l adjacent neighbors. The least-squares problem computes
the parameters ϕ that minimizes the estimation error. After
obtaining the parameters of the AR model, unknown pixels
in W can be estimated by LR pixels with the same model
parameters ϕ.

For better estimation, two kinds of AR models in
different directions are applied. To estimate a pixel’s
value, one of them uses the pixel’s diagonal neighbors,
while the other uses the pixel’s cross-direction neighbors.
A pixel’s diagonal neighbors are pixels on top-left, top-right,
bottom-left, and bottom-right of the pixel; its cross-direction
neighbors are the four-connected neighbors. Two sets of
model parameters can be calculated by performing these two
AR models in a local window. Therefore, constraints on pixels
are stronger and the unknown pixels can be estimated more
precisely.

These types of AR models are used in [10], [11], [13], [14],
[24], and [25]. However, there are two drawbacks. First, in
general scale cases there may be insufficient LR pixels in the
local window W to estimate unknown HR pixels. Second, the
stationary assumption aforementioned does not always hold in
most natural images. The solutions of these two problems will
be given in Sections III-A and III-B.

B. Superiority Compared With Prior Works

In this section, the superiority of the proposed method
compared with [24] and [25] is discussed. Similar to the
proposed method, these prior works also use AR models
and weighted least-squares to interpolate images at arbitrary
scaling factors. The common problem of utilizing AR models
in general scaling situations is that the parameters of
AR models cannot be preestimated as in 2× enlargement.
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TABLE I

PSNR RESULTS AND THEIR VARIANCES OF DIFFERENT METHODS USING LR INPUT GENERATED BY DIFFERENT DOWN-SAMPLING METHODS (1.7×)

Thus, unlike dedicated 2× interpolation algorithms, such
as NEDI and SAI, there is no closed-form solution for
HR pixels.

To tackle this problem, [24] and [25] both use the
Gauss–Seidel method to optimize the parameters of AR mod-
els and HR pixels, i.e., to alternatively fix one set of variables
(e.g., the parameters of AR models) and optimize on the other
set (e.g., the HR pixels). Although can be proved convergent,
the Gauss–Seidel method suffers from the slow rate of con-
vergence, which results in a large number of iterations. The
proposed method optimizes the parameters of AR models and
HR pixels at the same time and converges faster (less than
three iterations for most of the window).

The other drawback of the AR model is that it strongly relies
on the piecewise stationary of natural images. The method
proposed in [24] uses the geodesic distance weighting for both
parameter and data estimation, considering that the geodesic
distance can simultaneously measure the spatial distance and
color difference. However, the geodesic distance is not actually
suitable for such scenario. The geodesic distance tends to
slit up the local window. In that case, similar pixels in
different regions (say similar pixels on both sides of an edge)
have distinct weights. The proposed method uses a simpler
yet effective weighting scheme and produces more reliable
results.

The method proposed in [25] focuses on the convolu-
tion kernel of the down-sampling process and combines
AR models with a convolution-based image degradation
model. The experiments show that the results of their method
are rather impressive if the convolution kernel in the degra-
dation model is the same as the real degradation process.
In reality, however, such prior knowledge is not always known
to the processor. Meanwhile, the method still relies on the
piecewise stationary of natural images. The proposed method
is robust to the degradation process, which can be observed
in Table I. The proposed method is also robust to the initial
value and the down-sampling process that generates the down-
sampling matrix D, as shown in Table II. In this paper, we
are trying to set up a general scaling framework adequate to

TABLE II

PSNR RESULTS AND THEIR VARIANCES OF THE PROPOSED

METHOD USING DIFFERENT INITIAL VALUES AND

DOWN-SAMPLING MATRICES (1.7×)

different degradation processes, different initializations, and
different down-sampling matrices.

III. GENERALIZED IMAGE INTERPOLATION ALGORITHM

In this section, we present a generalized image interpolation
method. The difference between 2× enlargement methods
and the generalized method is elaborated at first. Then, we
introduce a weighting scheme to define the similarity of two
pixels that will be used to assign weights for all the pixels in
the local window. Finally, our generalized image interpolation
algorithm is described in detail.

A. Generalization of Interpolation
at Arbitrary Scaling Factors

In the HR image reconstructed by most AR-based inter-
polation methods, there are always plenty of pixels that are
extracted from the LR image directly. In other words, these
pixels are exactly the same as the corresponding pixels in
the LR image. We name these pixels fixed-pixels and inter-
pixels for other pixels. In a local region in the HR image,
the more fixed-pixels, the more information we can get to
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Fig. 2. HR pixels (black dots) and LR pixels (white circles) in the local region
at different scaling factors. The overlapped pixels are fixed-pixels, while other
HR pixels are inter-pixels. (a) Scaling factor = 2.0. (b) Scaling factor = 1.5.
(c) Scaling factor = 3.0. (d) More general situation. A general scaling factor,
such as 1.7, is likely to produce a rather large N .

Fig. 3. Illustration of y and yc. Let T be the side-length of the local
square window, y is a T 2 × 1 vector constructed by all pixels (red and blue
dots) in the window; yc is a (T − 2)2 × 1 vector consists of pixels in the
local window excluding the pixels on the boundaries of the window (red dots
only).

interpolate inter-pixels. Fig. 2 shows that the relative location
between fixed-pixels and inter-pixels varies as the scaling
factor changes. When the scaling factor is 2, there is only one
inter-pixel between adjacent fixed-pixels [Fig. 2(a)]. Hence, it
is a good way to estimate inter-pixels from their neighboring
fixed-pixels.

However, 2× enlargement is just one of the special
circumstances of the image enlargement. In Fig. 2(d),
N is the distance between adjacent fixed-pixels. It is
equivalent to the minimal integral multiples of the scal-
ing factor. In most cases, as N increases, there are fewer
fixed-pixels around inter-pixels. Temporarily, we assume that
the locality stationary still remains and apply two AR models
on pixels as dedicated 2× interpolation algorithms. Different
with AR-model based 2× interpolation algorithms, inter-
pixels are estimated by its neighbor pixels (instead of its
neighbor fixed-pixels) no matter what types of pixels they are.
The formation is modeled as

min
y,a,b

{
α‖yc − Ay‖2

2 + β‖yc − By‖2
2

}
(3)

where the T 2 ×1 vector y consists of pixels in a local T × T

window of the HR image and y =
[

yc
yb

]
(the formation of

y and yc is shown in Fig. 3). Vector yc consists of pixels in
the local window excluding the pixels on the boundaries of the
window and vector yb consists of pixels on the boundaries.
Since some of the neighbors of pixels in yb are out of
the window, only the pixels in yc can be the center of an
AR model. α and β are the coefficients that control the weight
of two AR models. A and B are both (T − 2)2 × T 2 and they

Fig. 4. Similar patches in the local window. Patches in yellow frames are
similar to each other but different from those in red or navy blue.

are defined as

A(i, j) =
⎧
⎨

⎩

ak, if y j is the kth pixel of
yi ’s diagonal neighbors

0, otherwise

B(i, j) =
⎧
⎨

⎩

bk, if y j is the kth pixel of
yi ’s cross-direction neighbors

0, otherwise
(4)

where ak and bk are the kth element of a and b. a =
(a1, a2, a3, a4) and b = (b1, b2, b3, b4) are the parameters of
two AR models, respectively. Different from 2× enlargement,
these AR parameters cannot be computed by (2) because
all pixels in y are unknown. Therefore, the iterative process
introduced in Section III-C can be used to solve this issue.

Since fixed-pixels are not utilized in AR models for HR
images, these valuable pixels can be used to build a data
fidelity constraint as the HR image reconstruction term [27].
For a local window in an HR image, we down-sample it
by bicubic interpolation and compare it to the corresponding
window in LR image. The constraint is modeled as

‖x − Dyc‖2
2 < ε (5)

where the vector x consists of pixels in the corresponding
window of the LR image and matrix D represents the down-
sampling process; ε controls the maximum value of the
constraint. The pixels on the boundaries of the local window
are not estimated by the AR models, thus yc is adopted to
perform the data fidelity constraint. Such constraint is useless
in dedicated 2× interpolation algorithms because the pixels
down-sampled are exactly the same with the corresponding
pixels in the LR image.

B. Weight Distribution in a Local Window

On the basis of the assumption that the image is piecewise
stationary, all AR models of the same type in the whole local
window share the same AR parameters. Therefore, when the
statistics in the local window are stationary, AR models can
impose appropriate constraints on the window and produce
rather good image reconstruction. However, natural images do
not maintain stability in most local windows. For example,
as shown in Fig. 4, there are significant differences between
an edge-crossing area and a smooth area in a local window.
Thus, estimations of AR models in this window are not robust.
To solve this issue, we introduce a weighting scheme to
measure the similarity between the pixel to-be-output (usually
the center pixel) and other pixels in the local window.

Naturally, we prefer to assign large weight on the pixel
(in other words, its corresponding AR model) that is more
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Fig. 5. Comparison between interpolation results without and with the pro-
posed weighting scheme. The first row shows the interpolation results without
the proposed weighting scheme. The second row shows the interpolation
results with the proposed weighting scheme.

similar to the center pixel, and vice versa. The similarity
weight between two pixels depends on the similarity of the
local structure centered at two pixels (3×3 patches in Fig. 4).
Moreover, the similarity is measured as a decreasing function
of the weighted Euclidean distance [28]. The weight is made
up of two parts. One is the similarity of two pixels’ local
structures, the other measures the spatial distance between
them. The weight w(m, n) between two pixels m and n is
defined as

w(m, n) = wls (m, n) · wd(m, n) (6)

where wls(m, n) represents the similarity of two pixels’ local
structures. wd (m, n) represents the distance between two
pixels. They are described as

wls(m, n) = e−‖Lm−Ln‖2
2/ε1 (7)

wd (m, n) = e−‖Pm−Pn‖2
2/ε2 (8)

where Lm and Ln represent vectors consisting of the eight-
connected neighborhood of m and n, Pm and Pn are the
spatial coordinates of m and n, respectively. ε1 and ε2 control
the shape of the exponential function. In our experiments,
ε1 and ε2 are set to be 17 and 33, empirically.

After obtaining all pixels’ weights to the center pixel of
the local window W , a diagonal (T − 2)2 × (T − 2)2 weight
matrix W can be formed, which represents the weight distribu-
tion in the current local window. Fig. 5 shows the effectiveness
of the proposed weighting scheme. The interpolation without
the proposed weighting scheme tends to mix up the texture
region and the smooth region. The interpolation results with
the proposed weighting scheme preserve the sharpness of the
textures.

C. Generalized Interpolation Algorithm

By adding the weight matrix W to (3), combining (5) with
a Lagrangian multiplier λ, we can get the objective function
described below

min
y,a,b

{
α‖W(yc−Ay)‖2

2+β‖W(yc−By)‖2
2 + λ‖x−Dyc‖2

2

}
.

(9)

The objective function presented in (9) minimizes the sum
of the estimation error of the two weighted AR models and

the data fidelity term. For convenience, the formula can be
represented by a least-squares problem as

min
y,a,b

‖R(y, a, b)‖2
2 (10)

where R(y, a, b) is the residue vector, representing the esti-
mation residue. It is described as

R(y, a, b) =
⎡

⎣

√
αW(yc − Ay)√
βW(yc − By)√
λ(x − Dyc)

⎤

⎦. (11)

The least-squares problem in (10) is nonlinear. To make
it easier to be solved, the STLS is utilized to linearize the

problem. Let 	y=
[

	yc
	yb

]
, 	a and 	b be the small changes

in y, a and b, respectively. To better constrain the pixels
in the window, pixels on the boundaries of the window are
kept unchanged. In other words, every element in 	yb is
zero. As a result, some part of the matrices’ product can
be omitted. A and B can be decomposed to [Ac, Ab] and
[Bc, Bb], respectively. Let T be the side-length of the square
local window. Then, Ac and Bc are (T − 2)2 × (T − 2)2

matrices and they are composed by the first (T − 2)2 columns
of A and B, respectively. Whereas Ab and Bb are composed
by the remaining columns.

Let R1(y, a) = √
αW(yc − Ay), thus

R1(y + 	y, a + 	a)

= √
αW[(yc + 	yc) − (A + 	A)(y + 	y)]

= √
αW[(yc − Ay) + 	yc − 	Ay − A	y − 	A	y]

= √
αW[(yc − Ay) + 	yc − (Ac	yc + Ab	yb) − 	Ay]

= √
αW[(yc − Ay) − (−I + Ac)	yc − 	Ay]

= R1(y, a) − √
αW[(−I + Ac)	yc + 	Ay] (12)

where 	yb and the higher order infinitesimal 	A	y have been
omitted.

Similarly, the residue vector R(y, a, b) can be linearized as

R(y + 	y, a + 	a, b + 	b)

= R(y, a, b) −
⎡

⎣

√
αW[(−I + Ac)	yc + E1	a]√
βW[(−I + Bc)	yc + E2	b]√

λD	yc

⎤

⎦ (13)

where E1 and E2 are (T − 2)2 × 4 matrices and constructed
as follows: the kth row of E1 is a vector constructed by four
diagonal neighbors of pixel yk ; the kth row of E2 is a vector
constructed by four cross-direction neighbors of pixel yk .
E1	a is just an equivalent representation of 	Ay to simplify
the matrix.

Let

C =
⎡

⎣

√
αW(−I + Ac)

√
αWE1 0√

βW(−I + Bc) 0
√

βWE2√
λD 0 0

⎤

⎦

	R = [	y 	a 	b]T.

For convenient representation, we rewrite (13) as

min
	y,	a,	b

‖R(y, a, b) − C · 	R‖2
2 . (14)
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Fig. 6. Possible configuration used in the proposed algorithm. The size of
windows is set to be 11 × 11. The square in the red solid line represents
the current window while the square in the green dashed line represents its
following window. Red dots and green dots are the output pixels of the current
window and the following window, respectively.

Hence, the nonlinear problem (10) is transformed to a
linear problem with 	y, 	a, and 	b as unknown quantities.
Therefore, given the initial values of y, a, and b, we can obtain
	R and use it to update y, a, and b for the next iteration.
In our implementation, bicubic interpolation is used as the
initial up-scaling method and the down-sampling process in
the data fidelity term. a and b are initialized as (1/4, 1/4,
1/4, 1/4). Weight coefficients α and β are empirically set
to be 0.2 and 0.3, respectively. The stopping criterion of the
iteration is either the maximum value of 	R < 1.0 or the
maximal number of iterations 20 being reached, whichever is
reached first.

The iterative process is computationally expensive. To alle-
viate the complexity of the proposed method, the proposed
algorithm is only applied on high-frequency areas. In Fig. 6,
the output pixels of two adjacent windows are shown. In our
experiment, we output the center 3 × 3 pixels at once. It may
slightly reduce the performance, but can lead to a 9 times
speedup. Meanwhile, to avoid blocking artifacts, we produce
an overlapping region between adjacent windows. The offset
is set to be 3 pixels. It can be seen that every pixel except
for the pixels in boundary areas of the whole image can be
processed.

IV. EXPERIMENTAL RESULTS

In this section, the proposed general scale interpolation
method is evaluated in two aspects. First, we test the proposed
interpolation method on the image enlargement and compare
it with other state-of-the-art interpolation methods. PSNR is
selected as the objective evaluation criterion. Second, we
test the proposed method on JSVM (the reference software
of H.264/SVC) [29]. The rate–distortion (R–D) curves are
compared with evaluate the performance of the proposed
method.

A. Image Enlargement

The proposed interpolation method is implemented on
MATLAB 7.10 platform. To evaluate the general applicability
of our method, we choose 1.5 and 1.7 as the scaling factors and

TABLE III

AVERAGE PSNR RESULTS OF DIFFERENT METHODS UNDER

THE EXPERIMENT SETUP OF ICBI (2×, Setup2)

compare interpolation results with bicubic interpolation and
SAGA [1]. To compare with other state-of-the-art dedicated
2× interpolation algorithms in general scale cases, we simulate
the general scale process by adding a bicubic interpolation
after the dedicated 2× interpolation. In addition, to evaluate
the performance of the proposed method when the scaling
factor is 2, the state-of-the-art dedicated 2× interpolation
algorithms, such as NEDI [10], SAI [11], DCC [9], ICBI [6],
and SAGA [1], are used as comparisons. Our testing images
are selected from the Kodak database [30] and the University
of Southern California - the Signal and Image Processing
Institute image database [31].

For a scaling factor s, we first generate the LR image by
down-sampling the original HR image by a factor of 1/s.
After that, different interpolation methods are used to obtain
HR images from the LR image. In 2× enlargement, the size
of HR results generated by n × n LR images using ICBI is
(2n −1)× (2n −1) instead of exact 2n ×2n, which is because
ICBI does not reconstruct the last column and the last row.
Thus, the left-top (2n − 1) × (2n − 1) part of the original HR
image (and the results of other methods) is used to compute
the PSNR and structural similarity (SSIM) to prevent the pixel
shift.

The proposed method is also robust to down-sampling
methods. It is because the two AR models and the weighting
scheme only consider the structure in the local window.
Meanwhile, the down-sampling matrix is generated by the
same method with the initial up-scaling. Thus, the differ-
ences produced by down-sampling methods do not affect
the proposed method. Table I shows the robustness of the
proposed method under different down-sampling methods. The
average variance of the proposed method’s PSNR results for
three kinds of down-sampling methods is the smallest, which
shows the robustness of the proposed method. Meanwhile, the
proposed method produces the highest PSNR results.

In our experiment, the direct down-sampling is applied for
2× enlargement and bicubic down-sampling for other scaling
factors (direct down-sampling cannot be used for arbitrary
scaling factors). For simplicity, such experiment setup is
regarded as Setup1 in the rest of this paper. It should be
noticed that PSNR/SSIM results for NEDI and ICBI are under-
estimated due to the half pixel shift under Setup1. To fairly
compare the performance of the interpolation methods, we
have added the experiments (2× enlargement) using bilinear
as down-sampling method (Setup2). Setup2 does not produce
the half pixel shift for those methods. The PSNR results of
different interpolation methods in the added experiments are
presented in Table III. As can be observed, ICBI performs
slightly better than SAI, DCC, and the proposed method. The
performance of the proposed method is competitive with SAI
and DCC, as it is under Setup1 (Table V), which further
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TABLE IV

PSNR (dB) RESULTS OF DIFFERENT METHODS AT ARBITRARY SCALING FACTORS (Setup1)

TABLE V

PSNR (dB) RESULTS AND SSIM INDEX (IN THE BRACKETS) OF DIFFERENT METHODS, SCALING FACTOR s = 2 (Setup1)

verifies the robustness of the proposed method. However, when
using Setup1, the performance of ICBI is not even better than
bicubic. In this case, the objective evaluation criterion may
be inaccurate. We recommend readers refer to the subjective
comparisons, such as Figs. 8 and 11–13 to evaluate the
performances of the compared methods.

If the scaling factor s is 1.5 or 1.7, for SAI, DCC, and ICBI,
the LR image is first magnified by a factor of 2, then followed
by the bicubic interpolation by a factor of s/2 (denoted as
SAI+BC, DCC+BC, and ICBI+BC in Tables I and IV). Most
of the interpolation algorithms do not process pixels on the
boundaries of images, including the proposed method. Thus,
PSNR between the processed images and the original images
is calculated regardless of the 5-pixel-width boundaries of the
images.

The other weight coefficient λ is set to be 0.5 empirically.
The window size is also important to our algorithm (a larger
size window may impact the locality stationary, a small one
cannot provide enough structural information), we set it to be
11 × 11. Results of 1.5×, 1.7×, and 2× magnifications are
shown in Tables IV and V.

As can be observed from Table IV, the proposed method
generates the best results in most cases. In our experiments,
Barbara is a very interesting image because the bicubic
interpolation always produces the best result in all cases. The
proposed method is particularly sensitive to edges, because of
the weight distribution in a rather large window. In addition,
the initial value is given by the bicubic interpolation, which

Fig. 7. Local magnification of Barbara in aliasing part (1.5× enlargements).
(a) Original image. (b) Result of bicubic. (c) Result of SAGA. (d) Result of the
proposed work. The white block with its corresponding magnification on the
left-top corner of each image shows the severe aliasing area, which is not well
processed by the proposed method. The black block with its corresponding
magnification on the right-bottom corner of each image shows the slight
aliasing area, which is clearly reconstructed by the proposed method.

will easily cause optical aliasing [Fig. 7(b)]. The proposed
method can alleviate slight aliasing but cannot properly
process severe aliasing [Fig. 7(d)]. The proposed method
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Fig. 8. Subjective comparison with other general scale interpolation algo-
rithms applied on different images with scaling factor s = 1.7. From left to
right: bicubic, DCC + BC, ICBI + BC, SAGA, the proposed method, and the
original image. From top to bottom: Barbara, Bike, Cameraman, Lighthouse,
and Sailboat.

considers the severe aliasing as edges on a false direction
and reconstructs the false edges more sharply than SAGA
[Fig. 7(c)]. In Fig. 7, a severe aliasing and a slight aliasing are
marked in white and black blocks, while their magnifications
are shown in the left-top corner and right-bottom corner of the
image, respectively. In Barbara, there are a lot more severe
aliasing artifacts in bicubic results. Thus, the proposed method
produces false edges more than the correct ones and the quality
of the reconstructed image is not good enough.

To evaluate the general applicability of our method,
2× enlargement experiments are also conducted and Table V
shows the results. The performance of the proposed method is
comparable with other state-of-the-art dedicated 2× interpo-
lation algorithms. Moreover, the proposed method is designed
for general scaling factors to make images/videos more adap-
tive to all kinds of media-playing devices. Thus, the proposed
method has greater advantages in the general scale situation
and its performance is basically satisfactory in 2× situation.
In addition, our method obtains better SSIM index [32].
Compared with PSNR, the SSIM index is more consistent
relative to visual perception [33]. It is well known that the
human visual system is more sensitive to the edge structures
of images. As a result, our method has a better performance
on the SSIM index over DCC and ICBI, and is equivalent
with SAI.

As pointed out before, in our experiments, the input LR
images for 2× enlargement are directly down-sampled and
that of 1.5× and 1.7× enlargements are down-sampled by
bicubic. The applied experiment setup causes half pixel shift
for NEDI/ICBI. To make a fair comparison, we have also
tested the proposed method using the experiment setup that
does not produce the half pixel shift for NEDI/ICBI. The
PSNR results are presented in Table III.

The superiority of the subjective quality is also demon-
strated in Figs. 8–11. In general scale cases, the proposed

Fig. 9. Subjective image quality comparison of reconstructed HR images
by different methods in 1.7× enlargements. Local magnification is shown in
the upper-right corner of each image. (a) Original image Bike. (b) Result of
bicubic. (c) Result of SAGA. (d) Result of the proposed method.

Fig. 10. Subjective image quality comparison of reconstructed HR images by
different methods in 1.5× enlargements. Local magnification is shown in the
upper-left corner of each image. (a) Original image Cameraman. (b) Result
of bicubic. (c) Result of SAGA. (d) Result of the proposed method.

method presents sharper edges and better visual quality than
bicubic and SAGA. As shown in Fig. 9, the proposed method
presents more distinct letters on the rider’s sleeve. In Fig. 10,
the proposed method preserves the sharpness of both hori-
zontal and beveled edges. As shown, bicubic interpolation
produces evident zigzag artifacts, while SAGA somewhat blurs
the edges. Our method preserves the sharpness of edges and
obtains satisfactory restoration. Fig. 8 shows more comparison
of 1.7× interpolation results.

As for 2× enlargement situations, we compared some
images to show the superiority of the proposed method on
long and sharp edges (Fig. 11). Bicubic interpolation presents
fuzzy areas around the edges. For most of the edges, NEDI,
SAI, DCC, ICBI, and SAGA present rather good results, but
there are still some jags and ringing effects on a few sharp
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Fig. 11. Subjective comparison with other state-of-the-art 2× dedicated
interpolation algorithms applied on different images with scaling factor s = 2.
From left to right: bicubic, NEDI, SAI, DCC, ICBI, SAGA, the proposed
method, and the original image. From top to bottom: Airplane, Bike, Flower,
Monarch, Barbara, and Lighthouse.

Fig. 12. Subjective image quality comparison of reconstructed HR images by
different methods in 3× enlargements. From left to right: bicubic, SAI+BC,
DCC+BC, ICBI+BC, the proposed method, and the original image.

Fig. 13. Subjective image quality comparison of reconstructed HR images
under noisy environment by different methods in 2× enlargement. The LR
input is corrupted by Gaussian noise. From left to right: bicubic, SAI, DCC,
ICBI, and the proposed method.

edges, which affect the subjective image quality. The proposed
method presents the sharpest edges and best subjective quality.
Fig. 12 shows the 3× enlargement results of a region of
the Airplane image. It further shows the effectiveness of the
proposed method when dealing with slight aliasing artifacts.

Since there exists a noise term in the AR model, the
proposed method is also applied to noisy LR images. Fig. 13
shows the performance under the noisy environment. The
proposed method produces the sharpest edge structures (the
tripod leg) while maintaining textures (in the lawn) despite
the noise.

Currently, the code is implemented in MATLAB. Due to
the iterative process, the processing time is relatively long.
To give readers an intuitive impression of the time performance
of the proposed method, we list the processing time on
different images and the average processing time on frames
from different videos in Table VI. Theoretically, the time
complexity of the proposed method is O(k P Q), where k is
a constant, P and Q are the height and width of the HR

TABLE VI

PROCESSING TIME (SECONDS) OF DCC, ICBI, THE PROPOSED METHOD,

AND SCSR ON DIFFERENT IMAGES (4×) AND VIDEOS (2×)

Fig. 14. Possible parallel implementation. The squares in the same color
represent windows being processed in parallel in the same pass. The dots in
four different colors represent output pixels in different passes.

image, respectively. In the experiment, the processing time
of the proposed method is about 2–6 times slower than ICBI
and much faster than the learning-based method Sparse coding
Super Resolution (ScSR) [17] (under the default configuration
except for the scaling factor). The processing speed can be
improved by implementing the code in C and using the parallel
interpolation scheme. In principle, any two nonoverlapping
windows can be processed simultaneously.

For example, to promote the processing speed, the following
16-pass parallel implementation can be used. As shown in
Fig. 14, the offset between adjacent windows is set to be 12 in
the same pass. Fig. 14 only shows the output of four different
passes in the horizontal direction. By outputting center 3 × 3
pixels of every window in each horizontal and vertical pass,
all the pixels (except the pixels on the boundaries of the
whole image) can be processed after the 16-pass procedure.
Such implementation can avoid the data dependence in the
parallel process and may lead to a significant promotion of
processing speed. The only difference between the original
method and the parallel one is the output order, which affects
the initial value of local windows. Since the method is robust
to the initial value, we believe the performance of the parallel
implementation should be as good as the original one.

B. Resolution Adaptive Video Coding

To compare the performance of the proposed method and
the up-sampling method in H.264/SVC [2], we have also
tested the proposed method on the JSVM 9.15 codec [29].
Abundant sequences from the coding community [34] have
been tested in the experiment to evaluate our method in
the codec. The overall coding performance of the modified
encoder is compared with the original encoder of JSVM.

In the experiment, two spatial layers are encoded. The
enhancement layer was encoded with Common Intermediate
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Fig. 15. Subjective quality comparison of frames in the reconstructed video
sequences. From top to bottom: the second frame of Akiyo; the second frame
of Foreman; the fourth frame of Highway; and the fourth frame Harbor. From
left to right: original frame; the result of JSVM; and the result of the proposed
method.

Fig. 16. R–D performance of different sequences. The largest gain of the
proposed method over JSVM is more than 1 dB, observed in Akiyo sequences.

Format sequences and the base layer was encoded with Quarter
Common Intermediate Format sequences. The scaling ratio
between the base layer and the enhancement layer is 2.
MPEG4 13-tap dyadic down-sampling filter is utilized as the
down-sampling method.

The subjective quality of frames in video sequences is
compared in Fig. 15. As shown, the results of the proposed
method have better subjective quality than that of JSVM.
Textures are preserved by the proposed method, especially
edge structures.

We set the Quantization Parameter (QP) of the base layer to
be 32, and change the QP of the enhancement layer from 32
to 42 to plot R–D curves for different sequences (Fig. 16).
As shown, the proposed method outperforms the method
in JSVM. In the experiments, it is noticed that interlayer
prediction is applied in most of the frames because of the
precise reconstruction of the proposed method.

V. CONCLUSION

In this paper, we present an interpolation algorithm that
is suitable for arbitrary scaling factors considering the non-
stationarity statistics of natural images. The AR models are
constructed by the pixel’s neighbors instead of its available LR
neighbors to solve the general scale interpolation problem. The
similarity of pixels in the local window is exploited to alleviate
the inaccurate estimation of AR models caused by the local
instability of natural images. The experimental results show
that our proposed algorithm outperforms the state-of-the-art
methods and produces much better image quality with sharp
edges. Furthermore, when tested in JSVM codec, our method
also produces better subjective quality and R–D performance.
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